Power Testing ETL with Power BI – The Process

11 11 2014

PowerTool_1This is a short blog series on using Power BI tools to support testing ETL processes. I have presented on this subject at few SQL Saturdays over the past few years and am finally succumbing to multiple request to turn it into a blog post. Realizing the amount of content is more than I typically would put into a single post, I will be putting together this short series to cover the material. The first post is this one. It will walk through the entire process at a high level. I will follow this post with a deeper look at Power Query’s role in the process. The third post will cover Power Pivot and building out test cases. Finally, we will wrap the series up with some visualization ideas for Excel and Power View. You can find all the posts as they come online here. Let’s get started.

The Problem Area

Why use Power BI to test ETL? While working as the architect on an ETL project for moving data from third party web service to an on-premise financial solution, we needed to put together a testing strategy that could be implemented by non-developers on the project. Our situation was that our project was “too small” to engage our QA team but the requirement for reusable testing needed to be fulfilled. Our project team consisted of a BI architect (that would be me), an ETL developer, and a business analyst (Chuck Whittemore).

NOTE: We are testing the data transformations and data load. This is not intended for auditing or performance. There are other tools for reviewing those including the built in reporting in SSIS and Pragmatic Works’ BI xPress tool. If you are tracking whether a package fails or succeeds, you should use either of these options not this process.

The Big Idea

The BA and I were discussing options for testing and we theorized that we could use a new add-in for Excel (Power Query, still in preview at imagethe time) with Power Pivot to build out tests. The key to success on this project is that we needed to be able to test with non-developer tools, no SQL Server Management Studio or SSIS could be involved in the testing. The primary reason for this is that he would be doing the testing. We also did not want to recreate every step in the ETL process the same way. So, time to put theory into practice. We determined that we would create test cases in Visual Studio then build out tests to match those cases in Excel using the Power BI add-ins. He would do the work in Excel and we, the developer and I, would provide technical support as needed.

The Recommended Tools

Before we dig into the process, I want to lay out the tools used for development and for testing. While this solution can use other tools, it is important to know what we used in practice to create our solution.

ETL Development Tools

imageThe ETL development was done using SQL Server Integration Services (SSIS). At the time, we needed to use Script tasks to consume the web service content. The financial system used a custom load process that we dumped formatted data into a file for the system to pick up and load.

In the examples, I use in the presentations and will lay out here, I will be using a text file to SQL Server implementation. While complex ETL problems are common and hard to test, this simplified version is easier to follow in examples. You should be able to apply the principles used here to test any solution.

Testing Tools

imageThe testing development for the referenced project consisted of Excel with Power Query and Power Pivot. Power Query was in preview at the time, so we had some of the performance issues and early bugs to work through. None of these issues, prevented us from completing the project.

The presentation solution relies on the latest version of Power Query (which changes every month) and Power Pivot in Excel 2013. Most of the examples are easy to follow, but you should be able to solve most transformation tests with the combination of Power Query and Power Pivot. Definitely do not discount the capabilities of Power Query and the fact that new functionality is being added each month.

Team Foundation Server/Visual Studio Online

imageBoth projects use the online version of TFS. If you are currently not using a source control and work tracking solution, I highly recommend you look at the online version of TFS. It will allow you up to 5 users free and give you ability to use source control, create test plans, create test cases, log bugs and track changes. These are key features necessary to complete a good solution that can be managed and tracked.

The Process

image

I am going to walk through my demo to build out the process steps. This will allow you to see examples. I will call out any thing of relevance related to the project here as well.

1. Business Rules

The first part of any project, especially in ETL, is to understand the business rules. If you are working with a data warehouse project, this may be fairly well documented in a dimensional model. In both of our cases here, we are moving data from one system to another. The transformations and business rules are primarily driven by the target system. Here are some examples of business rules in the media library sample project.

  • Author names are stored in separate columns – FirstName and LastName
  • If an author’s name include a middle name or initial or some variation, this combination should be stored in the first name column. For example, J.R.R. Tolkien would be stored as follows:
    – FirstName: J.R.R.
    – LastName: Tolkien
  • Copyright year should be stored as a 4 digit value
  • Page numbers should not exceed 1000

Every project has some type of business rules. It is hard to build out transformations and create test cases without these rules.

2. Source to Target Map

This is the single most important document for the tester. It tells the tester how the developer is getting from source to destination and what type of data massaging needs to be handled. Typically, people use some variation of the example created by the Kimball Group over the years.

3. Developing SSIS

The developer begins the process of creating the SSIS package. He will be using the Source to Target Map as his guide and will update that document to handle special cases in the data as needed. Ideally he is working in a development environment that will allow for test build outs as well.

4. Creating Test Plans and Test Cases

The tester creates test plans and test cases in TFS. These tests are based on business rules and the source to target map. Depending on both the complexity of the solution and the time to develop, some test cases could be did the table move the correct data field for field and row count. This method can be particularly useful when working with large tables or simple data flows. However, you should have a test case for every transformation that massages the data. This will insure that the data is being transformed as expected.

image

Keep in mind, this solution will support test cases for each field in a data load if required. The tester and architect should evaluate what is the appropriate amount of coverage to guarantee the highest level of quality in the data transform. As always, there is a diminishing rate of return if you “test everything” at the lowest level. It will be expensive in terms of cost of development when the chance for error is minimal. It will also take substantially longer to test everything. You need to understand and be able to articulate how the testing was accomplished and your level of confidence in the results.

5. Building the Tests

This is the most extensive part of the process besides the SSIS development. I will not go into all the details here, but will walk through the overall process and principles. I will provide detailed examples in the follow up posts as noted above.

Let’s start with the end result. Chuck and I were able to determine that we could use DAX to create comparative formulas on data that could be brought into Power Pivot from both the source and the destination. Essentially, we wanted to use math to determine the results of the tests. So in our example, we use a formula like “if Source.CopyrightYear = Destination.CopyrightYear, then it passes, else it fails.” Depending on how you want to measure, pass could be 0 or 1. Then we add the values up to determine if data passed or failed the test. We can even tell you failure rates.

In order to get the data in a comparative state, we needed each table in the destination with a table that matched from the source. However, it is very common that sources and destinations are not one-for-one table matches. This is where Power Query comes in. Using Power Query in our example set we bring in the text file and massage or shape the data to look like the destination. Most importantly, we need to apply all business rules and transformations to the source. Once this is done, we do no massaging on the destination data. This allows us to compare what the ETL process did with what our tests say it should have done.

A key part of being able to compare is the ability to relate the two tables in Power Pivot. You need to be able to match natural keys or derived keys between the two sources. The relationship should be from the destination table to the source table. Without this relationship, you will not be able to build the calculations for the tests. Keep in mind the goal is to get our source to look like expected results. Any data in the destination should match the source in our scenario.

image

Once both tables are created and loaded into Power Pivot, we can complete the tests using DAX. In some cases, we create calculations on both tables to be compared. A classic example is row count. We count the number of rows in the source table and the destination table. Then we create a calculation on the destination to compare values. This meets the requirements of a row count test case (e.g. all data was successfully imported).

Another example of a test is to compare the content in a field from source to destination. This is where we use a lot of conditional logic to verify the contents of a field in a row is the same in both tables. Calculated columns (not measures) are used to create the comparison results. The conditional statement should result in a number. This is important in order to create a measure that sums up the results to determine if errors exist or not. If you choose success to be 1, then you will check your results against the row count to determine if there are errors. If you choose failure to be 1, then a nonzero count means you have errors. There is no right or wrong way to handle this, you would choose based on visualization techniques. Most of the time, using 1 for failures is fine. However, if you want to create KPIs, you will likely need success to be one so you have a good target to work with.

6. Testing the Initial Load

Once you have created the tests, you are ready to test the initial load. You will connect to both sources. Ideally, your source will not change so you can redo the test multiple times, but this will work regardless. Refresh the data which may require rerunning the Power Query query. Once you have refreshed the data you should be able to check the calculations in a simple pivot table to determine what tests have succeeded or failed. This is the beauty of this solution. Each subsequent execution of SSIS, you will be able to refresh your data and review your results to determine how successful the ETL is.

image      image     image

A side effect of this work is that the developer can review the test results in Excel and Power Pivot with you to more easily find the discrepancy in the data transform. In some cases, the tests are in error as well. It is important that the developer and tester work together to determine cause as well. A good team will be able to work through issues rather quickly.

7. Recording Bugs and Issues

You will need to go back to Visual Studio to change the pass/fail for each test. If a test fails you can log a bug for the developer and you that information to determine if it was fixed prior to a subsequent run. It is likely that multiple sprints will be required to complete the work so you can work with your team to determine the best ways to communicate what is ready. If you track the work in TFS, you will queries are available to help you see what work has been completed.

You can determine if the fix worked and then set the test results accordingly. This will help show progress on the project as well.

8. Visualizing the Results

You can visualize your results using KPIs, conditional formatting and even Power View. If you have a project that needs to be easily evaluated you can publish your results to SharePoint and use charts and graphs to show how accurate the process is so far.

image  image

We will dig into visualization options more in a following blog post.

Tracking Test History

No solution is perfect and that is true here as well. One of the most common questions is how do we see the historical results? This solution does not easily provide for that. I am looking at options, but for the moment the idea is that the history will be tracked through TFS. However, you could save the workbook after each iteration. This will give you some history, but you would want to make sure that you don’t refresh data on a historical workbook or the results would be overwritten.

Some final thoughts.

Power Query is not an ETL tool. It’s target destination is always the same – Power Pivot. While it’s ease of use makes it appear to be a tool to be used for ETL, it is not there yet. However, it is in its ease of use that we have a place to work with it here.

My plan is to have some deeper technical dives into parts of the solution in the future.





Techfuse, a New Laptop, and How Microsoft Azure Helped Save the Day

24 04 2014

On Tuesday, April 22, I had the opportunity to speak at the Techfuse conference in Minneapolis. I was presenting a session on the differences between tabular and multidimensional models with a focus on the developer’s experience. My deck has tenTechFuse_logo  slides including title, references, and bio. The rest of the time is spent in Visual Studio building out equivalent models in using SSAS Tabular and SSAS Multidimensional.

The previous week, I was issued a new laptop from my company, a Dell 7440. This is a very nice machine and I had it all set for the presentation. About 11 AM (I was scheduled to speak at 1:15 PM) it occurred to me that I did not recall seeing a VGA port only HDMI. Next question, did the projectors at the convention center support HDMI? Answer, No. Now I had about an hour and a half to resolve this issue. Simple, I decided to head downtown and get the convertor from Office Depot. This was about 8 blocks away. I could do that and get some exercise in.

I took off at about 11:30. First, I stopped at Target, it was closer. No luck. So on to Office Depot. Keep in mind that Office Depot sells laptops like mine with only HDMI support and it stands to reason that they would have the converter. No such luck. I was able to get the HDMI converted to DVI, but that would not help as I later found out. They directed me to Radio Shack where I promptly picked up a DVI – VGA converter. Now I have three pieces that when strung together should support my needs. I headed back to the convention center and arrived with 30 minutes to spare. Working with the AV guy, we got it all plugged in only to still have it not work. Turns out you need a convertor to convert the digital signal to analog for use in the older projectors. Now what?

The moderator for my room offered me her laptop to use for the presentation. Which was AWESOME! So now I have a way to give the presentation, all ten slides. However, she did not have Visual Studio with SSDT for BI and SQL Server installed. Which was fine, because I didn’t expect her to.

Here is where Azure comes in. I had created a VM with SQL Server Tabular installed along with Visual Studio 2012 and the SQL Server Data Tools for BI. So, I firedth9CGBMYN6 up the VM right before I gave the presentation. I warned the crowd about what had happened and decided to push the demos to the end of the presentation so everyone could leave if nothing worked and all the material could be covered.

I was able to get into the VM, fire up Visual Studio. Since the demo was a live build of a tabular model and multidimensional model, I used a database I had created in SQL Azure as the data source and we built it the models live. Granted we were not able to do a complete multidimensional model because the database was not formatted as star schema, but it helped highlight the difference between what needs to be done prior to development. Overall it went very well (I think, surveys are forthcoming…). At the end of the day, without the work I had been doing in Azure I would not have been able to demo and it would have been a very short presentation.

Some lessons learned -

  • Be sure to have what you need to support presenting in a variety of scenarios. I should have made sure to have a converter prior to the conference as most convention centers and other facilities haven’t upgraded their projectors yet.
  • I will likely set up Azure VMs to support more demos. Just in case. It is always good to have a backup plan though a wireless connection would have painful to do that on.
  • Roll with it. Don’t give up, try to make the best of a bad situation. People understand things don’t always go perfectly. At the end of the day, I came to talk about multidimensional and tabular model development. I could have opened the floor up for discussion and did Q&A. Make the most of every situation.




Oracle Tips for MSBI Devs #6: Supporting SSAS Tabular Development

14 04 2014

As SQL Server Analysis Services Tabular Models become more popular, models will use Oracle databases as sources. One of the key issues whenever you work with Oracle is understanding how to properly configure the necessary components to enable development.

Getting Started

If you have worked with Oracle before, you are very aware of a few things you need to be successful. First, you need to install the Oracle client. Here is where the details get messy. When you are working with MSBI tools, you will be using SQL Server Data Tools in Visual Studio which is still only 32 bit. Of the BI tools in SSDT, only SSIS has run modes to support 32 bit and 64 bit configurations. As a result, you need to install the 32 bit Oracle client in order to develop your tabular model.

Once that has been installed you will need to update the TNSNAMES.ORA file with the servers you will be targeting during development. Ideally, your Oracle DBAs have a file for you to use so you don’t need to create one. One nice thing is that the Oracle 12c client updates the PATH environment variable with the location of the bin folder. (Yes, Oracle still uses environment variables.) I would also recommend adding or using the TNS_ADMIN variable to specify the location of the TNSNAMES.ORA file. (See http://www.orafaq.com/wiki/TNS_ADMIN for details.)

NOTE: It took me many hours to work through a variety of configuration issues related to working with the Oracle client install. A couple of reinstalls, reboots, TNSNames.ORA tweaks, and lots of fruitless searching were all required to get this working. Be warned, working with Oracle clients are neither fun nor simple.

The Issue

Now that you have the 32 bit client installed you can connect to the Oracle database through the tabular model designer. As shown below, you can connect to Oracle through the Table Import Wizard.

image

You will be able to successfully test the connection as noted here.

image

And you will be able to execute a query and get results. You can also use the option to select tables and views.

image

However, once you decide to import the data you will encounter the following error:

image

The issue is that while you can do most of your work within Visual Studio using the 32 bit client, the import process targets the SQL Server tabular instance you specified when you created the project. While the 32 bit version of SQL Server is still available, most of us would not install that, even in our development environments. If you do not encounter this error, you are either using the 32 bit client of SQL Server or you have the 64 bit Oracle client installed (more on that next). As long as Visual Studio is only 32 bit compliant and you choose to use the 64 version of SQL Server you will see this issue.

The Resolution

The resolution is fairly simple. You need to download and install the 64 bit Oracle client. I would recommend that you get it installed, then reboot your development PC. While this may not be required, it seems to have helped me with a number of connectivity issues. You will need to be prepared for some “interesting” issues as you will have more than one Oracle home installed and you have the potential of many types of ORA-XXXXX errors. Once you are up and running you should be able to develop tabular models built on Oracle databases.

Some Parting Thoughts

First, I want to be clear that I think that Oracle is a solid database platform. However, I have never been at a client site or on a project where the connectivity or client installs were totally correct or functional without some work between the Oracle team and the BI development team. I think that the .NET driver is supposed to better and I may try that out for a later post (when I have the hours to spare).

I did the testing for this completely on Azure (and my Surface). I set up an Oracle VM and a SQL Server VM on Azure. The Microsoft team put together a great reference on setting up your Oracle VM. Check it out. I also did a previous post on setting up Oracle in an Azure VM. Both VM types can be pricey, but in a testing environment all was not too bad. I encourage you to use Azure to for these types of scenarios. But be sure to turn it off when you are done.





Setting Up Tabular Models on Windows Azure

12 03 2014

In my last post, I discussed how to set up Oracle in Windows Azure. During a customer call, there were questions about using SQL Server Analysis Services (SSAS) tabular models with Azure. This post will walk through setting up an Azure VM and deploy a tabular model to that VM.

If you do not have an Windows Azure account you can use a trial account with your Microsoft or Live account. Check out http://www.windowsazure.com for details on how to “try it free.”

Setting Up the VM in Azure

From the Management Portal on your Azure account, select Virtual Machines from the left then Add at the bottom. On the next screen, choose to create your VM from the gallery. You should see the Choose an Image option as seen below. As you can see, I have the SQL Server 2012 SP1 Enterprise image highlighted. You will need to use the Enterprise license as Tabular does not run on Standard. In this case, the Data Warehousing image is NOT the Business Intelligence Edition of SQL Server.

image

You can also choose to create a “blank” VM and load up SQL Server on your own. I chose to use the image to speed up the process – which it did substantially.

After selecting the image, the next few steps guide you through setting up the VM. For the most part, the defaults will work fine. Be aware that once this is turned on, you will be charged for it running. It is up to you to make sure you understand the costs, even if you are using the free trial.

During the setup steps, you will create the VM and its related cloud service. Remember that the account is your admin account for the VM and you will need those credentials to Remote Desktop into the VM. On the last, setup page is the Endpoints. Leave the defaults, we will add an endpoint for our tabular model later.

At this point, it will take a few minutes to set up your new VM. Once it is setup, open a Remote Desktop session into it. If you look at services or at the SQL Configuration console you will notice that everything except a tabular instance have been set up for you. As a result, I would not recommend using this gallery image for a production deployment. You should look at creating your own template if you want a more locked down and refined setup.

Setting Up the Tabular Instance in Azure

As noted before, the tabular instance is not set up. The installation media is on the server, so you can run that to install your tabular instance. I won’t walk through the install process, but this was great to find because that meant I did not have to copy media to my VM.

Making the Tabular Instance Available

This section covers the tedious tasks required to make your tabular instance available for querying outside of the VM. There are three basic steps to getting your instance “online”: setting the port number in SSAS, updating the firewall, and adding endpoints. I will walk you through the steps I used to get this done followed by some references that helped me get here.

Setting the Port Number in SSAS

By default, SSAS, both multidimensional and tabular instances, use dynamic ports. In order, to allow connections through the firewall and endpoints, the port number needs to be fixed. I used guidance from TechNet and did the following steps to set the port.

    1. Opened the Task Manager to get the PID for MSOLAP$<<instance name>>.
    2. Ran netstat –ao –p TCP to get a list of ports used by current processes. Once I had identified my port number, I also noted the server IP address which is required in the next step.
    3. I chose to confirm that I had the correct port by connecting to the instance using the IP address and port number.
    4. Next, we have to go old school and modify the msmdsrv.ini file. The typical install path for this file is C:\Program Files\Microsoft SQL Server\<<instance name>>\OLAP\Config\msmdsrv.ini.
    5. Open the file in notepad and find the <Port>0</Port> tag.
    6. Change the port number to the port number that was identified above. (Technically we could have used any open port number. I chose to do this because I was sure the port number was available.)
    7. Save the changes and restart the service.
    8. Once again confirm you can connect to the server with SSMS using the IP address and port number.

Now you have set up the SSAS instance to use a fixed port number.

Updating the Firewall

Now that we have a port number, we can create a firewall rule. We access the firewall rules from the Server Manger. In the Windows Firewall console, we will be creating a new Inbound Rule..

image

  1. The rule type is Port
  2. We will apply the rule to TCP and specify the port we defined above.
  3. On the action tab, we selected Allow the Connection. (If you are planning to use this in a production environment, you will need to verify your connection requirements.)
  4. Next, we clear any connection we don’t want to apply.
  5. Finally, I named the rule with a descriptive name.

Now we have the firewall rule in place to allow external connections for the tabular instance.

Adding Endpoints

The final step to making the instance available is to add the endpoints in Azure. In the WIndows Azure portal, we need to go the VMs page again, select our VM, and open the ENDPOINTS tab. From here we create a new endpoint.

  1. We are creating a standalone endpoint.
  2. Next, we select the TCP protocol and add the port number to both the private and public port textboxes.
  3. Finally, we apply the changes.

We are now ready to test connectivity.

References

Setting up VM Endpoints

Configuring Windows Firewall

Configuring Windows Firewall with SSAS

Connecting to the Tabular Instance in Azure

So to verify this works, I wanted to connect to the model with SSMS on my desktop. However, it uses Windows authentication and I am not on the same domain. (My IT staff is likely still laughing about me joining my VM to our domain.)

Thankfully, Greg Galloway (blog) reminded me of how to set up runas to use different credentials to connect to SSAS. Here is the syntax I used to connect to the tabular instance on Azure using a command window:

runas /netonly /user:<<VM name>>\<<username>> “C:\Program Files (x86)\Microsoft SQL Server\110\Tools\Binn\ManagementStudio\Ssms.exe”

This allowed me to open SSMS using those credentials. Next, I used the VM + port to connect. You will see that the Windows credentials in the dialog are not what you entered on the command line. This is expected and the credentials you entered in the command line will be passed through to the VM.

Deploying a Tabular Model to Azure

I attempted three different ways to deploy my model to the Azure VM. Two worked, one did not.

Deploying from Visual Studio on My Desktop

My first attempt was to deploy from Visual Studio on my desktop. I set the deployment properties to point to the Azure instance using the same credentials I had used with SSMS. I also set up a command line execution to use runas like with SSMS.

It appeared I could connect, but I continually got a permissions error which is shown below. After much frustration, I gave up on it and moved to the next options.

image

Using XMLA to Deploy

This is the most straightforward way to deploy an SSAS DB on a different server. I used SSMS to generate the Create Database XMLA statement. Because I had not deployed it locally, I needed to modify the XMLA statement to remove the user name and guid from the database name and database ID. (AdvWorksTab1_SteveH_<<Some GUID>>)

In a bit of irony, I can use the SSMS connection from my desktop using the runas to deploy the database to the VM.

The reality is that this is easy and acceptable way to deploy SSAS databases to production environments, in Azure or in your datacenter.

Deploying from Visual Studio on the VM

The final method I used was deploying Visual Studio onto the VM and deploying from there. I used VisualStudio.com (TFS online) to transfer the source code from my desktop to the VM. I had to install the TFS client on the VM, but SSDT with BI tools is already there.

  1. Installed the VS 2010 TFS Client: http://www.microsoft.com/en-us/download/details.aspx?id=329
  2. Then installed Visual Studio SP1  http://social.msdn.microsoft.com/Forums/vstudio/en-US/4e4851dc-eb29-4081-9484-d38a6efa07ee/unable-to-connect-to-tfs-online?forum=TFService
  3. Finally installed VS2010 Team Foundation Server Compatibility GDR (KB2662296) http://www.microsoft.com/en-us/download/details.aspx?id=29082

Now it will connect to TFS Online. I got the latest from my project and pointed the project to my tabular instance.

Be sure to check the impersonation settings.

Next, I deployed the project to the local tabular instance on the VM and it worked great. This might make sense for development, but I would not use this method in a production environment.

Some Closing Thoughts

I was amazed at how simple it was to create the VM and set up tabular in Azure. Knowing what I know now, I would be able to set up a usable instance fairly quickly and deploy a database using XMLA without much effort. That was very nice.

Doesn’t work with Office 365

I started this project to determine the connectivity capability with Office 365. Well, that does not work in my current configuration. I was able to create a workbook on my desktop using my Azure tabular model and Excel. It works just as you would expect. However, when I deployed the workbook to Office 365, data refresh always failed.

image

My next thought was to use a data gateway, but those only work with SQL Server Data Engine and Oracle, not SSAS. This is still a significant issue with making Power BI able to fully take advantage of existing BI assets at a company.

Using Azure Active Directory

My next step would be to use Azure Active Directory services to try to get Windows Authentication to work throughout. But that is for a later project and post.





PowerPoint–My Dashboard and Report Design Tool

20 03 2013

At some point I think that I am becoming a Microsoft OfficeMALL13_Badge_See125x125 specialist as opposed to a BI Architect.  All of this work in Excel and now PowerPoint.  Okay, done with the ramblings.  As I have noted in a couple previous posts, I am working with a team on the Modern Apps Live! conference which is in Vegas next week.  Well, this is another “lesson learned” that I wanted to pass along as a result of doing that work.  (Hope to see you there.)

Using PowerPoint 2013

Microsoft Powerpoint 2013 IconSo I had to create two types of data visualizations for this conference.  Usually, I would use paper or white board to sketch it out and then proceed to make it a reality.  Somewhere along the way, I heard that Microsoft uses PowerPoint to lay out UIs.  Not sure if it is true or not, but it seemed easier and less expensive than Blend or Visio, so I thought I would give it a try.

So, I first needed to create a summary report for a poll within the app that was created.  I used the standard tools with in PowerPoint such as tables, charts, text boxes, and images to mock up my report.  What I liked was I was able to add notations to the mockup for future reference.

image

I had some frustration creating the charts as I wanted them to be representative.  But overall not a bad experience.  The next task I was taking on was working with the dashboards I was going to create in Excel 2013.  I still wanted to lay it out so I knew what I would be trying to design.  This was when I stumbled onto the Storyboarding menu.

image

I actually like using the shapes in this toolset better.  Turns out this is available when you install Visual Studio Ultimate, Visual Studio Premium (my version), or Visual Studio Test Professional.  More on that can be found on MSDN – Storyboard Using PowerPoint.  This can be integrated into TFS and directly associated to work items.  I am not a UX expert, but I like the ability to add tabs like I will have in Excel and there is even a SharePoint page background.

image

However, as you can see, even if you don’t have Storyboarding you can still effectively build up a PowerPoint slide to look like the report, dashboard, or even SharePoint page.  I was not sure if I would be able to embrace this, but in the end I really like the simplicity and using PowerPoint allows for comments, versioning in SharePoint, and other mechanisms to support dashboard design.

I also wanted to pass along another blog post I found from Jason Zander on the Windows Azure team on the same subject:  My Favorite Features: Creating Storyboards with PowerPoint.  Hopefully this gives you another simple way to mock up reports and dashboards when you can’t find that User Experience Pro.





Steps to Preload Data into Tables with SSDT

6 03 2013

I am working as the data architect and developer on a modern appMALL13_Badge_See125x125 build with a the team from Modern Apps Live! in Vegas.  The goal of the project is to provide guidance to build modern applications and use this application as a reference.  While the conference is focused on the why of the build, we have learned some interesting things about how as well.  This is one of those how items.

In this post, I needed to preload some data into the database.  I wanted to include this process in the database project I had created.  However, I quickly found out that this was not a straightforward as I thought it would be.  Here are the steps I followed and any of the gotchas along the way.

1. Create Scripts for the Load Queries.

I started out with scripts that included a DELETE statement followed by an INSERT statement.  However, this created problems when data existed, particularly when the table is a list table used as a foreign key.

Next, I tried MERGE.  This worked great.  This gives me a way to handle new records that are required for the lookup or any changes made to existing data.  Here is the script I used:

merge dbo.MVCategory as target 
using ( 
        select 1, 'Fun' 
        union 
        select 2, 'Technology' 
        union 
        select 3, 'Entertainment' 
        union 
        select 4, 'News' 
        union 
        select 5, 'Sports' 
        union 
        select 6, 'Off-Topic' 
    ) as source (CategoryID, CategoryName) 
    on target.CategoryID = source.CategoryID 
when matched then 
    update set target.CategoryName = source.CategoryName 
when not matched then 
    insert (CategoryID, CategoryName) values (source.CategoryID, source.CategoryName) 
;

After going through this process on my own, I also found the same recommendation from the SSDT team at Microsoft as noted here: http://blogs.msdn.com/b/ssdt/archive/2012/02/02/including-data-in-an-sql-server-database-project.aspx

2. Add the Scripts to Your Project

This step is pretty straight forward.  You can either create the script files and add them to your project or you can create them within your project as script files.

3. Change the Build Action to None

This was one of the key pieces I missed.  After I added the scripts to the project and then ran a build, it was broke the build.  Each of these files which were merge scripts reported an error during the build.  It turns out this is called out in the article I reference above as well.  SSDT (SQL Server Data Tools) is designed to build database objects not manipulate data.  One other area of grief caused by this is that you can break the build in the solution if your project is part of a bigger solution such as mine.  As a result, you will get grief from the other developers, you can trust me on this one.

The image below shows where to set the Build Action property to NONE.  This will exclude these files from the build in this format.

image

4. Add a PostDeployment Script to Your Project

If you do not already have a PostDeployment Script, you need to do this at this point.  This is a specific type of script task that can be found in the Add menu.

image

5. Add SQLCMD Statements to the PostDeployment Script

The final part of the process is to add SQLCMD statement to the PostDeployment script to execute the files you have created.  As noted in the help in the template, you can execute the scripts by calling a single SQLCMD statement for each script.

:r .\PreLoadMVCategory.sql

The :r {filename} syntax will expand the script for execution during a publish call or DACPAC creation.

I hope you find this useful as well.  This is a common task required in creating solutions.








Follow

Get every new post delivered to your Inbox.

Join 811 other followers

%d bloggers like this: